Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.253
Filtrar
1.
Sci Rep ; 14(1): 8408, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600156

RESUMEN

The current study was conducted on the inhabitants living in the area adjacent to the Hudiara drain using bore water and vegetables adjacent to the Hudiara drain. Toxic heavy metals badly affect human health because of industrial environmental contamination. Particularly hundreds of millions of individuals globally have faced the consequences of consuming water and food tainted with pollutants. Concentrations of heavy metals in human blood were elevated in Hudiara drainings in Lahore city, Pakistan, due to highly polluted industrial effluents. The study determined the health effects of high levels of heavy metals (Cd, Cu, Zn, Fe, Pb, Ni, Hg, Cr) on residents of the Hudiara draining area, including serum MDA, 8-Isoprostane, 8-hydroxyguanosine, and creatinine levels. An absorption spectrophotometer was used to determine heavy metals in wate water, drinking water, soil, plants and human beings blood sampleas and ELISA kits were used to assess the level of 8-hydroxyguanosine, MDA, 8-Isoprostane in plasma serum creatinine level. Waste water samples, irrigation water samples, drinking water samples, Soil samples, Plants samples and blood specimens of adult of different weights and ages were collected from the polluted area of the Hudiara drain (Laloo and Mohanwal), and control samples were obtained from the unpolluted site Sheiikhpura, 60 km away from the site. Toxic heavy metals in blood damage the cell membrane and DNA structures, increasing the 8-hydroxyguanosine, MDA, creatinine, and 8-Isoprostane. Toxic metals contaminated bore water and vegetables, resulting in increased levels of creatinine, MDA, Isoprostane, and 8-hydroxy-2-guanosine in the blood of inhabitants from the adjacent area Hudiara drain compared to the control group. In addition,. This study also investigated heavy metal concentrations in meat and milk samples from buffaloes, cows, and goats. In meat, cow samples showed the highest Cd, Cu, Fe and Mn concentrations. In milk also, cows exhibited elevated Cu and Fe levels compared to goats. The results highlight species-specific variations in heavy metal accumulation, emphasizing the need for targeted monitoring to address potential health risks. The significant difference between the two groups i.e., the control group and the affected group, in all traits of the respondents (weight, age, heavy metal values MDA, 8-Isoprostane, 8-hydroxyguaniosine, and serum creatinine level). Pearson's correlation coefficient was calculated. The study has shown that the level of serum MDA, 8-Isoprostane, 8-hydroxyguaniosine, or creatinine has not significantly correlated with age, so it is independent of age. This study has proved that in Pakistan, the selected area of Lahore in the villages of Laloo and Mohanwal, excess of heavy metals in the human body damages the DNA and increases the level of 8-Isoprostane, MDA, creatinine, and 8-hydroxyguaniosine. As a result, National and international cooperation must take major steps to control exposure to heavy metals.


Asunto(s)
Agua Potable , Metales Pesados , Contaminantes del Suelo , Adulto , Humanos , Animales , Bovinos , Creatinina/análisis , Contaminantes del Suelo/metabolismo , Pakistán , Agua Potable/análisis , Cadmio/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Intoxicación por Metales Pesados , Suelo/química , Verduras/metabolismo , Daño del ADN , ADN , Cabras/metabolismo , Medición de Riesgo
2.
PLoS One ; 19(4): e0300878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635835

RESUMEN

Saltwater intrusion in the coastal areas of Bangladesh is a prevalent phenomenon. However, it is not conducive to activities such as irrigation, navigation, fish spawning and shelter, and industrial usage. The present study analyzed 45 water samples collected from 15 locations in coastal areas during three seasons: monsoon, pre-monsoon, and post-monsoon. The aim was to comprehend the seasonal variation in physicochemical parameters, including water temperature, pH, electrical conductivity (EC), salinity, total dissolved solids (TDS), hardness, and concentrations of Na+, K+, Mg2+, Ca2+, Fe2+, HCO3-, PO43-, SO42-, and Cl-. Additionally, parameters essential for agriculture, such as soluble sodium percentage (SSP), sodium absorption ratio (SAR), magnesium absorption ratio (MAR), residual sodium carbonate (RSC), Kelly's ratio (KR), and permeability index (PI), were examined. Their respective values were found to be 63%, 16.83 mg/L, 34.92 mg/L, 145.44 mg/L, 1.28 mg/L, and 89.29%. The integrated water quality index was determined using entropy theory and principal component analysis (PCA). The resulting entropy water quality index (EWQI) and SAR of 49.56% and 63%, respectively, indicated that the samples are suitable for drinking but unsuitable for irrigation. These findings can assist policymakers in implementing the Bangladesh Deltaplan-2100, focusing on sustainable land management, fish cultivation, agricultural production, environmental preservation, water resource management, and environmental protection in the deltaic areas of Bangladesh. This research contributes to a deeper understanding of seasonal variations in the hydrochemistry and water quality of coastal rivers, aiding in the comprehension of salinity intrusion origins, mechanisms, and causes.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Calidad del Agua , Monitoreo del Ambiente/métodos , Ríos , Bangladesh , Sodio/análisis , Contaminantes Químicos del Agua/análisis , Agua Subterránea/análisis , Agua Potable/análisis , India
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124225, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581774

RESUMEN

The scarcity of water resources has raised concerns regarding drinking water safety. Excessive addition of hypochlorous acid (OCl-) as a disinfectant in drinking water can result in severe consequences. Moreover, abnormal levels of OCl- within the human body can lead to various diseases. Employing fluorescence analysis, the design and synthesis of specific fluorescent probes for simultaneous detection of OCl- in water environments and living organisms holds strategic significance in ensuring the safety of drinking water and mitigating potential risks caused by its abnormal concentrations. This article utilizes naphthalimide as a precursor to develop a novel probe enabling highly sensitive detection of OCl- in water environments and at the organelle level within living organisms. This endeavor serves to provide assurance for drinking water safety and offers health alerts.


Asunto(s)
Agua Potable , Ácido Hipocloroso , Humanos , Ácido Hipocloroso/análisis , Agua Potable/análisis , Colorantes Fluorescentes
4.
PLoS One ; 19(4): e0299789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574164

RESUMEN

We examined the spatial distribution of Per- and Polyfluoroalkyl Substances (PFAS) in the US drinking water and explored the relationship between PFAS contamination, public water systems (PWS) characteristics, and socioeconomic attributes of the affected communities. Using data from the EPA's third Unregulated Contaminant Rule, the Census Bureau, and the Bureau of Labor Statistics, we identified spatial contamination hot spots and found that PFAS contamination was correlated with PWSs size, non-surface raw water intake sources, population, and housing density. We also found that non-white communities had less PFAS in drinking water. Lastly, we observed that PFAS contamination varied depending on regional industrial composition. The results showed that drinking water PFAS contamination was an externality of not only some industrial activities but also household consumption.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Contaminación del Agua , Contaminación de Medicamentos
5.
Methods Enzymol ; 696: 65-83, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658089

RESUMEN

There is intense interest in removing fluorinated compounds from the environment, environments are most efficiently remediated by microbial enzymes, and defluorinating enzymes are readily monitored by fluoride determination. Fluorine is the most electronegative element. Consequently, all mechanisms of enzymatic C-F bond cleavage produce fluoride anion, F-. Therefore, methods for the determination of fluoride are critical for C-F enzymology and apply to any fluorinated organic compounds, including PFAS, or per- and polyfluorinated alkyl substances. The biodegradation of most PFAS chemicals is rare or unknown. Accordingly, identifying new enzymes, or re-engineering the known defluorinases, will require rapid and sensitive methods for measuring fluoride in aqueous media. Most studies currently use ion chromatography or fluoride specific electrodes which are relatively sensitive but low throughput. The methods here describe refashioning a drinking water test to efficiently determine fluoride in enzyme and cell culture reaction mixtures. The method is based on lanthanum alizarin complexone binding of fluoride. Reworking the method to a microtiter well plate format allows detection of as little as 4 nmol of fluoride in 200 µL of assay buffer. The method is amenable to color imaging, spectrophotometric plate reading and automated liquid handling to expedite assays with thousands of enzymes and/or substrates for discovering and improving enzymatic defluorination.


Asunto(s)
Fluoruros , Fluoruros/análisis , Fluoruros/metabolismo , Agua Potable/análisis , Halogenación , Pruebas de Enzimas/métodos , Pruebas de Enzimas/instrumentación
6.
Environ Health ; 23(1): 42, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627679

RESUMEN

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are associated with many adverse health conditions. Among the main effects is carcinogenicity in humans, which deserves to be further clarified. An evident association has been reported for kidney cancer and testicular cancer. In 2013, a large episode of surface, ground and drinking water contamination with PFAS was uncovered in three provinces of the Veneto Region (northern Italy) involving 30 municipalities and a population of about 150,000. We report on the temporal evolution of all-cause mortality and selected cause-specific mortality by calendar period and birth cohort in the local population between 1980 and 2018. METHODS: The Italian National Institute of Health pre-processed and made available anonymous data from the Italian National Institute of Statistics death certificate archives for residents of the provinces of Vicenza, Padua and Verona (males, n = 29,629; females, n = 29,518) who died between 1980 and 2018. Calendar period analysis was done by calculating standardised mortality ratios using the total population of the three provinces in the same calendar period as reference. The birth cohort analysis was performed using 20-84 years cumulative standardised mortality ratios. Exposure was defined as being resident in one of the 30 municipalities of the Red area, where the aqueduct supplying drinking water was fed by the contaminated groundwater. RESULTS: During the 34 years between 1985 (assumed as beginning date of water contamination) and 2018 (last year of availability of cause-specific mortality data), in the resident population of the Red area we observed 51,621 deaths vs. 47,731 expected (age- and sex-SMR: 108; 90% CI: 107-109). We found evidence of raised mortality from cardiovascular disease (in particular, heart diseases and ischemic heart disease) and malignant neoplastic diseases, including kidney cancer and testicular cancer. CONCLUSIONS: For the first time, an association of PFAS exposure with mortality from cardiovascular disease was formally demonstrated. The evidence regarding kidney cancer and testicular cancer is consistent with previously reported data.


Asunto(s)
Ácidos Alcanesulfónicos , Enfermedades Cardiovasculares , Agua Potable , Fluorocarburos , Neoplasias Renales , Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Masculino , Femenino , Humanos , Agua Potable/análisis , Italia/epidemiología
7.
J Hazard Mater ; 470: 134186, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574664

RESUMEN

The pervasive presence of nanoplastics (NPs) in environmental media has raised significant concerns regarding their implications for environmental safety and human health. However, owing to their tiny size and low level in the environment, there is still a lack of effective methods for measuring the amount of NPs. Leveraging the principles of Mie scattering, a novel approach for rapid in situ quantitative detection of small NPs in low concentrations in water has been developed. A limit of detection of 4.2 µg/L for in situ quantitative detection of polystyrene microspheres as small as 25 nm was achieved, and satisfactory recoveries and relative standard deviations were obtained. The results of three self-ground NPs showed that the method can quantitatively detect the concentration of NPs in a mixture of different particle sizes. The satisfactory recoveries (82.4% to 110.3%) of the self-ground NPs verified the good anti-interference ability of the method. The total concentrations of the NPs in the five brands of commercial bottled water were 0.07 to 0.39 µg/L, which were directly detected by the method. The proposed method presents a potential approach for conducting in situ and real-time environmental risk assessments of NPs on human and ecosystem health in actual water environments.


Asunto(s)
Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Poliestirenos/química , Microplásticos/análisis , Nanopartículas/química , Agua Potable/análisis , Agua Potable/química , Microesferas , Tamaño de la Partícula , Límite de Detección , Dispersión de Radiación
8.
J Hazard Mater ; 470: 134229, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581875

RESUMEN

Total alpha and beta activities and Rn-222 concentrations were determined in water from different sections of seven aqueducts belonging to the water supply system of Campania region (Italy), known worldwide for its volcanism. Statistical analysis was performed on data to account for their variability across the aqueduct sections, and results were discussed considering the geology of reservoirs, the potential mixing processes occurring along the pipe network, the building/constituting materials of the aqueduct sections, and the integrity of the infrastructure. Guidelines proposed by Italian and international regulation entities were considered to determine if total alpha and beta activities and Rn-222 concentrations found at the taps of the different aqueducts should be considered detrimental to public health. Based on a deterministic and a stochastic approach, a health risk assessment was also tested for Rn-222, assuming direct ingestion and showering as potential exposure pathways. Results showed that applying guidelines returned an absence of hazard, whereas risk assessment returned a high probability of exposure to unacceptable Rn-222 doses for some aqueducts. Beyond the usefulness of obtained results to plan actions to improve the safety of drinking water in Campania, our outcomes represent a warning for bodies dealing with public health at any level: the use of guidelines can bring an underestimation of the risks exerted by the exposure to Rn-222 on human health. Further, using a probabilistic approach in risk assessment accounting for uncertainty can favor risk forecasts based on more "realistic" scenarios.


Asunto(s)
Agua Potable , Abastecimiento de Agua , Italia , Humanos , Medición de Riesgo , Agua Potable/análisis , Contaminantes Radiactivos del Agua/análisis , Erupciones Volcánicas
10.
Wei Sheng Yan Jiu ; 53(2): 316-331, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604970

RESUMEN

OBJECTIVE: To establishe an analysis and identification method for 2-methylisoborneol(2-MIB) and geosmin(GSM) in water using purge and trap-gas chromatography-mass spectrometry. METHODS: The samples were enriched and analyzed using a purge and trap system, followed by the separation on a DB-624(30 m×0.25 mm, 1.4 µm) chromatographic column. Quantification was performed using gas chromatography-mass spectrometry with the selected ion monitoring and internal standard calibration. RESULTS: The calibration curves for 2-MIB and GSM showed an excellent linearity in the range of 1 to 100 ng/L with R~2 values greater than 0.999. The detection limit and quantification limit for both 2-MIB and GSM were 0.33 ng/L and 1.0 ng/L, respectively. Spike recovery experiments were further carried on the source water and drinking water at three concentration levels. It showed that the average recoveries were from 82.0% to 111.0% for 2-MIB while 84.0% to 110% for GSM. Additionally, the test precision of 2-MIB and GSM ranged from 1.9% to 7.3% and 1.9% to 5.0%(n=6), respectively. The analysis of multiple samples including the local source water, treated water and distribution network water confirmed the existence of 2-MIB and GSM. CONCLUSION: Compared to the national standard(GB/T 5750.8-2023), the proposed method enables fully automated sample introduction and analysis without the extra pre-treatment. It provides the advantages of simplicity, good repeatability and high accuracy.


Asunto(s)
Agua Potable , Naftoles , Contaminantes Químicos del Agua , Agua/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Agua Potable/análisis , Canfanos/análisis , Contaminantes Químicos del Agua/análisis , Odorantes/análisis
11.
BMC Nephrol ; 25(1): 91, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468233

RESUMEN

BACKGROUND: We assessed the possible impact of provision of reverse osmosis (RO) water on the incidence of hospital diagnosed CKD/CKDu in North Central Province (NCP) of Sri Lanka. METHODS: An ecological study was conducted on data from 2010-2020 on the incidence of hospital diagnosed CKD/CKDu, CKD/CKDu screening and provision of drinking water RO plants in NCP. Analysis was conducted using descriptive statistics, ANOVA and chi-square test. RESULTS: The annual incidence of hospital diagnosed CKD/CKDu (per 100 000 population) in 2010-2013, 2014-2016 and 2017-2020 periods in Anuradhapura district were 129.07, 331.06 and 185.57 (p = 0.002) while in Polonnaruwa district these were 149.29, 326.12 and 296.73 (p = 0.04) respectively. In NCP provision of RO plants commenced after 2011 and the decline in the incidence of hospital diagnosed CKD/CKDu was seen in 25 of the 29 Divisional Secretary Divisions when more than 20% of the families received access to drinking RO water projects. CONCLUSIONS: The annual incidence of hospital diagnosed CKD/CKDu increased in NCP from 2010 to 2016 and continuously decreased thereafter. Continuous declining of CKD/CKDu incidence was seen after more than 20% of the families received access to drinking water RO plants.


Asunto(s)
Agua Potable , Insuficiencia Renal Crónica , Humanos , Agua Potable/análisis , Sri Lanka/epidemiología , Incidencia , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/etiología , Hospitales , Ósmosis
12.
Sci Adv ; 10(11): eadk4737, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478613

RESUMEN

In 2014, the municipal water source in Flint, Michigan was switched, causing lead from aging pipes to leach into the city's drinking water. While lead exposure in Flint children increased modestly on average, some children were exposed to high lead levels. Surveys of Flint residents show the water crisis was also associated with increased levels of stress, anxiety, and depression. We use Michigan's administrative education data and utilize synthetic control methods to examine the impact of the crisis on Flint's school-age children. We find decreases in math achievement and increases in special needs classification, even among children living in homes with copper (rather than lead) water service lines. Low socioeconomic status students and younger students experienced the largest effects on math achievement, and boys experienced the largest effects on special needs classification. Our results point toward the broad negative effects of the crisis on children and suggest that existing estimates may substantially underestimate the overall societal cost of the crisis.


Asunto(s)
Agua Potable , Plomo , Masculino , Niño , Humanos , Abastecimiento de Agua , Agua Potable/análisis , Escolaridad , Michigan
13.
Sci Rep ; 14(1): 6042, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472226

RESUMEN

Geospatial methods, such as GIS and remote sensing, map radon levels, pinpoint high-risk areas and connect geological traits to radon presence. These findings direct health planning, focusing tests, mitigation, and policies where radon levels are high. Overall, geospatial analyses offer vital insights, shaping interventions and policies to reduce health risks from radon exposure. There is a formidable threat to human well-being posed by the naturally occurring carcinogenic radon (222Rn) gas due to high solubility in water. Under the current scenario, it is crucial to assess the extent of 222Rn pollution in our drinking water sources across various regions and thoroughly investigate the potential health hazards it poses. In this regard, the present study was conducted to investigate the concentration of 222Rn in groundwater samples collected from handpumps and wells and to estimate health risks associated with the consumption of 222Rn-contaminated water. For this purpose, groundwater samples (n = 30) were collected from handpumps, and wells located in the Mulazai area, District Peshawar. The RAD7 radon detector was used as per international standards to assess the concentration of 222Rn in the collected water samples. The results unveiled that the levels of 222Rn in the collected samples exceeded the acceptable thresholds set by the US Environmental Protection Agency (US-EPA) of 11.1 Bq L-1. Nevertheless, it was determined that the average annual dose was below the recommended limit of 0.1 mSv per year, as advised by both the European Union Council and the World Health Organization. In order to avoid the harmful effects of such excessive 222Rn concentrations on human health, proper ventilation and storage of water in storage reservoirs for a long time before use is recommended to lower the 222Rn concentration.


Asunto(s)
Agua Potable , Agua Subterránea , Monitoreo de Radiación , Radón , Contaminantes Radiactivos del Agua , Humanos , Agua Potable/análisis , Monitoreo de Radiación/métodos , Radón/análisis , Pakistán , Contaminantes Radiactivos del Agua/análisis , Agua Subterránea/análisis , Contaminación del Agua/análisis
14.
Environ Sci Pollut Res Int ; 31(17): 25486-25499, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472570

RESUMEN

Human biomonitoring of toxic trace elements is of critical importance for public health protection. The current study aims to assess the levels of selected trace metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) into paired human nail and hair samples (n = 180 each) from different altitudinal setting along the Indus River, and which were measured by using inductively coupled plasma mass spectrometry (ICP-MS). The human samples (hair and nail) were collected from four different ecological zones of Pakistan which include frozen mountain zone (FMZ), wet mountain zone (WMZ), riverine delta zone (RDZ), and low-lying southern areas (LLZ). Our results showed the following occurrence trends into studied hair samples: higher values (ppm) of Zn (281), Co (0.136), and Mn (5.65) at FMZ; Cr (1.37), Mn (7.83), and Ni (1.22) at WMZ; Co (0.15), Mn (11.89), and Ni (0.99) at RDZ; and Mn (8.99) and Ni (0.90) at LLZ. While in the case of nails, the levels (ppm) of Mn (9.91) at FMZ and Mn (9.38, 24.1, and 12.5), Cr (1.84, 3.87, and 2.33), and Ni (10.69, 8.89, and 12.6) at WMZ, RDZ and LLZ, respectively, showed higher concentration. In general, among the studied trace elements, Mn and Ni in hair/nail samples were consistently higher and exceeded the WHO threshold/published reference values in most of the studied samples (> 50-60%) throughout the Indus basin. Similarly, hair/nail Pb values were also higher in few cases (2-10%) at all studied zones and exceeded the WHO threshold/published reference values. Our area-wise comparisons of studied metals exhibited altitudinal trends for Cd, Cr, Zn, and Mn (p < 0.05), and surprisingly, the values were increasing from south to north (at higher altitudes) and indicative of geogenic sources of the studied toxic elements, except Mn, which was higher at lower floodplain areas. Estimated daily intake (EDI) values showed that food and drinking water had the highest contribution towards Zn, Cu, Mn, and Ni and accumulation at all studied zones. Whereas, dust also acts as the main exposure route for Mn, Co, Cr, and Cd followed by the food, and water.


Asunto(s)
Agua Potable , Metales Pesados , Oligoelementos , Humanos , Monitoreo del Ambiente/métodos , Monitoreo Biológico , Cadmio/análisis , Pakistán , Plomo/análisis , Oligoelementos/análisis , Agua Potable/análisis , Metales Pesados/análisis
15.
Animal ; 18(4): 101117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520773

RESUMEN

Environmental conditions and available forage on pastures greatly differ between different farming systems, which can affect the behaviour of grazing cattle. The interplay between environment-, forage-, and animal-related variables may affect the use of feed and water resources in grazing-based systems. Hence, our objectives were (i) to study the differences between grazing-based systems and seasons in environment- and pasture-related variables as well as the behaviour, feed intake, performance, and water productivity of Nellore heifers, and (ii) to understand the interrelationships between these variables. The measurements were performed in a conventional grazing system (CON), an integrated crop-livestock (ICL), and a crop-livestock-forestry (ICLF) systems in the Brazilian Cerrado during the rainy and dry seasons. Ambient temperature and relative air humidity were hourly measured in both seasons. Forage biomass and sward height were determined every month. Forage samples were taken to determine the proportions of alive leaves, alive stems, and dead plant material and to analyse their nutritive value. Forage intake, drinking water intake, and liveweight changes were quantified in 12 Nellore heifers per system and season. Feeding behaviour was recorded by chewing sensors on nine continuous days in each season. Drinking water intake was measured by water meters attached to drinking water troughs, whereby trial cameras at the troughs recorded the frequency of drinking events of individual animals. Feed conversion efficiency and water productivity were estimated. The ICLF reduced the exposure time to high ambient temperatures so that heifers even grazed during the hottest hours. Forage biomass in ICL and CON had greater proportions of stem and dead plant material than in ICLF. Forage intake rate was greater and grazing events were longer for animals in ICLF than those in CON, whereas the daily number of grazing events was greater in CON. Feed conversion efficiency and water productivity were greater in integrated systems than in CON. Amongst studied variables, thermal environment and forage canopy structure with its proportions of dead plant material are the main driving factors for animal behaviour, forage intake rate, and animal performance. These variables reduce feed conversion efficiency and water productivity in grazing cattle. Further research should analyse strategies for promoting thermal comfort for the animals, increasing the proportions of alive biomass, and enhancing the nutritional value of pastures for more efficient use of forage and water resources in grazing-based systems.


Asunto(s)
Dieta , Agua Potable , Bovinos , Animales , Femenino , Dieta/veterinaria , Ganado , Agua Potable/análisis , Ingestión de Alimentos , Conducta Alimentaria , Estaciones del Año , Alimentación Animal/análisis , Poaceae
16.
Environ Pollut ; 348: 123857, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537794

RESUMEN

Microplastics in drinking water captured widespread attention following reports of widespread detection around the world. Concerns have been raised about the potential adverse effects of microplastics in drinking water on human health. Given the widespread interest in this research topic, there is an urgent need to compile existing data and assess current knowledge. This paper provides a systematic review of studies on microplastics in drinking water, their evidence, key findings, knowledge gaps, and research needs. The data collected show that microplastics are widespread in drinking water, with large variations in reported concentrations. Standardized methodologies of sampling and analysis are urgently needed. There were more fibrous and fragmented microplastics, with the majority being <10 µm in size and composed of polyester, polyethylene, polypropylene, and polystyrene. Little attention has been paid to the color of microplastics. More research is needed to understand the occurrence and transfer of microplastics throughout the water supply chain and the treatment efficiency of drinking water treatment plants (DWTPs). Methods capable of analyzing microplastics <10 µm and nanoplastics are urgently needed. Potential ecological assessment models for microplastics currently in use need to be improved to take into account the complexity and specificity of microplastics.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Microplásticos/análisis , Plásticos/análisis , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
17.
Artículo en Inglés | MEDLINE | ID: mdl-38541362

RESUMEN

The prevalence of dementia increases with nearly 10 million new cases each year, with Alzheimer's disease contributing to 60-70% of cases. Environmental factors such as drinking water have been evaluated to determine if a relationship exists between trace elements in drinking water and the risk of developing cognitive disorders in the elderly. The purpose of the current systematic review was to evaluate an association between the composition of drinking water and cognitive function in the elderly. In accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines, a literature search was conducted using PubMed and CINAHL databases. A total of 10 studies were included in the current systematic review. Aluminum is the most commonly evaluated trace element in studies (n = 8), followed by silica (n = 5), calcium (n = 4), and fluoride (n = 4). Aluminum exposure showed an increased risk of cognitive decline in four studies, with no association reported in the other studies. Higher silica and pH levels were shown to be protective against a decline in cognitive function. A similar protective effect of calcium was found in two studies. Future research should measure multiple trace mineral levels in all water sources to evaluate the impact on cognitive function.


Asunto(s)
Disfunción Cognitiva , Agua Potable , Oligoelementos , Anciano , Humanos , Aluminio/análisis , Calcio/análisis , Cognición , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/epidemiología , Agua Potable/análisis , Dióxido de Silicio/análisis , Oligoelementos/análisis
18.
Water Res ; 254: 121339, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432003

RESUMEN

Loose deposit particles in drinking water distribution system commonly exist as mixtures of metal oxides, organic materials, bacteria, and extracellular secretions. In addition to their turbidity-causing effects, the hazards of such particles in drinking water are rarely recognized. In this study, we found that trace per- and polyfluoroalkyl substances (PFASs) could dramatically promote the formation of disinfection byproducts (DBPs) by triggering the release of particle-bound organic matter. Carboxylic PFASs have a greater ability to increase chloroacetic acid than sulfonic PFASs, and PFASs with longer chains have a greater ability to increase trichloromethane release than shorter-chain PFASs. Characterization by organic carbon and organic nitrogen detectors and Fourier transform ion cyclotron resonance mass spectrometry revealed that the released organic matter was mainly composed of proteins, carbohydrates, lignin, and condensed aromatic structures, which are the main precursors for the formation of DBPs, particularly highly toxic aromatic DBPs. After the release of organic matter, the particles exhibit a decrease in surface functional groups, an increase in surface roughness, and a decrease in particle size. The findings provide new insights into the risks of loose deposits and PFASs in drinking water, not only on PFASs per se but also on its effect of increasing toxic DBPs.


Asunto(s)
Desinfectantes , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Desinfectantes/análisis , Agua Potable/análisis , Purificación del Agua/métodos , Halogenación , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Pollut Res Int ; 31(16): 24648-24661, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448773

RESUMEN

Cyanobacteria are known to produce diverse secondary metabolites that are toxic to aquatic ecosystems and human health. However, data about the cyanotoxins occurrence and cyanobacterial diversity in Pakistan's drinking water reservoirs is scarce. In this study, we first investigated the presence of microcystin, saxitoxin, and anatoxin in 12 water bodies using an enzyme-linked immunosorbent assay (ELISA). The observed cyanotoxin values for the risk quotient (RQ) determined by ELISA indicated a potential risk for aquatic life and human health. Based on this result, we made a more in-depth investigation with a subset of water bodies (served as major public water sources) to analyze the cyanotoxins dynamics and identify potential producers. We therefore quantified the distribution of 17 cyanotoxins, including 12 microcystin congeners using a high-performance liquid chromatography-high-resolution tandem mass spectrometry/mass spectrometry (HPLC-HRMS/MS). Our results revealed for the first time the co-occurrence of multiple cyanotoxins and the presence of cylindrospermopsin in an artificial reservoir (Rawal Lake) and a semi-saline lake (Kallar Kahar). We also quantified several microcystin congeners in a river (Panjnad) with MC-LR and MC-RR being the most prevalent and abundant. To identify potential cyanotoxin producers, the composition of the cyanobacterial community was characterized by shotgun metagenomics sequencing. Despite the noticeable presence of cyanotoxins, Cyanobacteria were not abundant. Synechococcus was the most abundant cyanobacterial genus found followed by a small amount of Anabaena, Cyanobium, Microcystis, and Dolichospermum. Moreover, when we looked at the cyanotoxins genes coverage, we never found a complete microcystin mcy operon. To our knowledge, this is the first snapshot sampling of water bodies in Pakistan. Our results would not only help to understand the geographical spread of cyanotoxin in Pakistan but would also help to improve cyanotoxin risk assessment strategies by screening a variety of cyanobacterial toxins and confirming that cyanotoxin quantification is not necessarily related to producer abundance.


Asunto(s)
Toxinas Bacterianas , Cianobacterias , Agua Potable , Humanos , Microcistinas/metabolismo , Pakistán , Ecosistema , Toxinas Bacterianas/análisis , Toxinas de Cianobacterias , Cianobacterias/metabolismo , Agua Potable/análisis , Lagos/análisis
20.
J Hazard Mater ; 469: 133989, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38461660

RESUMEN

Drinking water disinfection can result in the formation disinfection byproducts (DBPs, > 700 have been identified to date), many of them are reportedly cytotoxic, genotoxic, or developmentally toxic. Analyzing the toxicity levels of these contaminants experimentally is challenging, however, a predictive model could rapidly and effectively assess their toxicity. In this study, machine learning models were developed to predict DBP cytotoxicity based on their chemical information and exposure experiments. The Random Forest model achieved the best performance (coefficient of determination of 0.62 and root mean square error of 0.63) among all the algorithms screened. Also, the results of a probabilistic model demonstrated reliable model predictions. According to the model interpretation, halogen atoms are the most prominent features for DBP cytotoxicity compared to other chemical substructures. The presence of iodine and bromine is associated with increased cytotoxicity levels, while the presence of chlorine is linked to a reduction in cytotoxicity levels. Other factors including chemical substructures (CC, N, CN, and 6-member ring), cell line, and exposure duration can significantly affect the cytotoxicity of DBPs. The similarity calculation indicated that the model has a large applicability domain and can provide reliable predictions for DBPs with unknown cytotoxicity. Finally, this study showed the effectiveness of data augmentation in the scenario of data scarcity.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Cricetinae , Desinfección , Desinfectantes/toxicidad , Desinfectantes/análisis , Halogenación , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Halógenos , Cloro , Agua Potable/análisis , Células CHO
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...